
Haptic Headset Design Doc

Table of Contents

Introduction.. 2

Explanation of Project ... 2

Design Broken Down ... 3

Frontend ... 3

Backend .. 5

Hardware .. 6

Conclusion and Future Improvements .. 8

Introduction
The goal of the Hackable Haptic Headset is to design a headset that would allow the

wearer to feel vibrations, or other forms or haptic feedback, while listening to music. The
headset would be able to both generate feedback by following the music automatically, or
by allowing a musician to program set vibrations for how they feel the user should “feel”
the music. This project is like the many haptic feedback full body suits for VR that are
currently available, such as the one developed by Teslasuit. However, this headset is
designed for haptic feedback from music specifically.

Explanation of Project
The user of the headset should be able to put on some music, either from

headphones or some speakers, and the headset. When the user plays music, specific
zones on the headset will vibrate according to signals sent by Max. The headset itself won't
be able to play music but only vibrate to the music. It should be an add on to music, like
putting on some headphones, to feel more of the music. Figure 1 shows a concept design
of the headset, without any haptic feedback devices attached.

Figure 1 - Concept Design of the Haptic Headset

https://teslasuit.io/

Design Broken Down

Frontend

The frontend of this project uses Max to allow the user to program the signal to the
headset. Currently, the Max Patch takes the notes from a song, converts them to numbers
specifying a zone and a strength, which will be read by the Arduino on the headset.

The UI (Figure 2) has 3 main parts: range selection, zone selection, and outputs.
These sections allow the user to ‘program’ the headset by assigning different sounds in
their song to different zones on the headset. The user can also see the signal strengths
being sent to the headset as the audio plays.

The user has access to 6 filtergraph objects in Max that allow the audio input to be
filtered out into separate ranges. The ranges have default center values of 30, 155, 375,
1250, 4000, and 13000 hz. The user may edit these ranges by clicking and dragging on the
filtergraphs. There is also a button to reset the ranges to the default values.

After selecting the ranges they would like to filter for, the user will choose which
headset zones each range sends a signal to. This is represented by a 6x12 matrix of
buttons, where each row is a range, and each column is a zone corresponding to a
vibration motor on the headset. When the user clicks the ‘confirm’ button, a message is
sent to the Arduino that updates which zones are associated with each range.

Once the user-programmed settings are in place, the patch is ready to translate the
audio into vibration signals. The audio signal is filtered by the 6 selected ranges, and the
volume of each filtered signal is scaled into a number 0-127. A number 0 is a volume of –50
dB or lower, and a number 127 is –10 dB or higher. The user can see meters that represent
these numbers on the screen as the audio plays, as well as the number below. These
numbers are then computed into the proper ‘signal message’ form (as described in the
Backend section) and sent through the serial port to the Arduino. There is also an option to
change the refresh rate of the messages, in case lag is causing the audio and vibrations to
become out of sync.

Figure 2 - Screenshot of Developer UI while music is playing

Backend

This will be a dive into the backend side of the project. To go over key words, when I
refer to the zones that means each individual Vibrating Mini Motor and a Range is a group
of zones. All of the backend code is in an Arduino project and is based in C/C++

The backend will receive a number from MAX though the serial port on the Arduino
that can range from 0 through 32767 due to it being the max number the Arduino can store.
When this number is passed in, it's treated as a binary number and translated as such. The
first bit in the sequence is to tell what type of message we are dealing with. If the first bit is
a 1 then the next twelve bits are what zones we wish to set, then the final 3 bits are for the
range number which it translated back into a regular number. If the first bit is a 0 then the
message from MAX is to play the ranges, the next 9 bits are for the Range number and the
last 6 bits are for the strength that the range is going to be set/play to.

 An example of a message would be this, the Arduino receives a number that
translates to [1000001010111011]. Breaking this down we can see this
[1,000001010111,011], we see the first bit is a 1 so that means that we are setting the
1,2,3,5 and 7th zones to the 3rd range. Another example would be [0,110001111,101010],
here we are reading what strength we are playing on some ranges. The 1,2,3,4,8 and 9th
ranges are being set to a strength of 42 (101010 converted to decimal).

Figure 3 – Explanation of Message Structure

An issue that we faced is that because MAX sends a whole number though its serial
block, the Arduino treats it as a byte. Due to this, it limits the input message to 256 and no
more. We only found this out late in development due to issues with connecting MAX to the
Arduino.

Hardware

The hardware consists of 12 vibration motors attached to a fabric headset, in a 3x4
grid as shown by Figure 4. On the back of the headset is the Arduino, shown by the black
box, to which the vibration motors will be attached. Due to the limited ports on the
Arduino, the ground wires of the vibration motors are first connected to a mini breadboard,
then to the Arduino. Currently, the headset must be wired to a computer to work. Possible
improvements for this headset include a battery pack and wireless connection hardware
so that the headset can be used wirelessly.

Table 1 shows the parts to be used for the headset. Currently, all but the headstraps
and the Velcro roll have been ordered and are ready for assembly.

Figure 4 – Layout of Vibration Motors on the Headset

Table 1 – Haptic Headset Parts List

Part Source Quantity
Vibrating Mini Motor Adafruit 12
Arduino Mega 2560 Rev3 Amazon 1
Nylon Headstraps Aliexpress 1
Velcro Straps Roll Cable Ties and More 1
Mini Breadboard Adafruit 1
3” M/F Wires Adafruit 20
12” M/F Wires Adafruit 20

Conclusion and Future Improvements
Overall, we designed a Max Patch to handle the logic of encoding vibrations for a

certain zone on the headset and sent those numbers to an Arduino, which then decodes
those numbers as vibration frequencies for the specified zone. As of the end of us working
on this project, the headset is not functioning fully, as we were not able to assemble the
headset in time. Future goals for this project would be to assemble the headset and get it
working on a base level, improve the function of the headset through better haptic
feedback mechanisms undiscovered by us, and make the headset wireless so it does not
need to be attached to a computer to function. Additionally, as the current capacity of
variable feedback devices is 12, an upgrade to the Arduino that would allow more devices
would be beneficial. After these improvements, we hope to see improvements in the feel of
the headset, possibly by designing it in a way that looks like a typical hat, but still with all
the functionality of the original design.

	Introduction
	Explanation of Project
	Design Broken Down
	Frontend
	Backend
	Hardware

	Conclusion and Future Improvements

