Prototype and Testing

The prototype will be constructed using cylindrical neodymium magnets, a toroidal ferrite core with, 42 AWG enameled magnet wire, and a thin mu-metal sheet for shielding. Neodymium (NdFeB) magnets were chosen because they are stronger than AlNiCo magnets of the same size and are more commonly supplied. Documentation for the magnet and ferrite core can be found below. An alternative to using ferrite for the core would be silicon "electrical" steel, which is often used in AC transformers due to its high field intensity saturation and electrical resistivity. This material is a specialty steel that is usually not sold off the shelf, although several different suppliers exist, for instance AK steel. Use of silicon steel could involve ordering a bar of raw material and machining it into an appropriate shape. The sheet of mumetal I purchased is on the cheaper end. A more effective and expensive option would be permalloy sheets.

An initial test is to measure the raw output of the pickup with a voltmeter or oscilloscope. The input signal should be generated by an oscillating electric guitar string above the pickup, and an adjacent string will be used to test for isolation. Ideally, the pickup would not have to be embedded inside of a guitar body to perform the test. In other words, the string(s) would be set up outside of a guitar. A designated portion of the adjacent string can be magnetized with two bar magnets. The signal generated from the movement of the adjacent string must be insignificant compared to that of the string directly above the pickup. A benchmark that would indicate ideal isolation is for the amplitude of the signal of the undesired string to be $1 / 100^{\text {th }}(-40 \mathrm{db})$ of the amplitude of the desired string. To test the cancellation of noise, any non-shielded power cable carrying 60 HZ at residential voltage can placed nearby or held above the pickup. In this case the output signal should be insignificant.

D2H2 Specification Sheet

Product Specifications

Type:	DISC
Dimensions:	0.125 dia $\times 0.2$ thk (in)
Tolerance:	All dimensions ± 0.004 in
Material:	NdFeB, Grade N 42
Plating:	NiCuNi
Max Op Temp:	$176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$
Br max:	$13,200 \mathrm{Gauss}$
BH max:	42 MGOe

BH max: $\quad 42 \mathrm{MGOe}$

Performance Specifications

Pull Force, Case 1,
Magnet to a Steel Plate: $\quad 0.79 \mathrm{lb}$

Surface Field values are derived from calculation and verification with experimental testing. These values are the field values at the surface of the magnet, centered on the axis of magnetization. Measurement of the B field with a magnetometer may yield varying results, depending on the geometry of your sensor. Pull Force values are based on extensive product testing in our laboratory. Different configurations of magnets and surrounding ferromagnetic materials may substantially alter your results.

 Fair-Rite Products Corp. PO Box JOne Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 5977001101 Printed: 2014-06-11

Part Number:

5977001101
Frequency Range: Medium Permeability, 77 (ui=2000) \& 78 (ui=2300) materials
Description:
77 TOROID
Application:
Where Used:
Part Type:
Inductive Components
Closed Magnetic Circuit
Toroids

Mechanical Specifications

Weight:

$$
\begin{equation*}
2.400 \tag{g}
\end{equation*}
$$

Part Type Information

A ring configuration provides the ultimate utilization of the intrinsic ferrite material properties. Toroidal cores are used in a wide variety of applications such as power input filters, ground-fault interrupters, common-mode filters and in pulse and broadband transformers.
-Toroids are listed by initial permeability classes and increasing dimension of the inside diameter.
-All toroidal cores are supplied burnished to break sharp edges.
-Toroids are tested for $A L$ values at 10 kHz .
-Toroids with an outside diameter of $9.5 \mathrm{~mm}\left(.375^{\prime \prime}\right)$ or smaller can be supplied Parylene C coated. The Parylene coating will increase the ' A ' and ' C ' dimensions and decrease the ' B ' dimension a maximum of $0.038 \mathrm{~mm}(.0015$ '). The ninth digit of a Parylene coated toroid part number is a ' 1 '. See the material characteristics of Parylene C in our online catalog.
-Toroids with an outside diameter of $9.5 \mathrm{~mm}\left(.375^{\prime \prime}\right)$ or larger can be supplied with a uniform coating of thermo-set plastic coating. This coating will increase the ' A ' and ' C ' dimensions and decrease the ' B ' dimension a maximum of 0.5 mm (.020"). The 9th digit of the thermo-set plastic coated toroid part number is a '2'. Thermo-set plastic coating is RoHS compliant.
-Thermo-set plastic coated parts can withstand a minimum breakdown voltage of 1000 Vrms , uniformly applied across the 'C' dimension of the toroid.
-The " C " dimension may be modified to suit specific applications.
-For any toroidal core requirement not listed in the catalog, please contact our customer service department for availability and pricing.
-Explaination of Part Numbers: Digits $1 \& 2=$ product class, $3 \& 4=$ material grade, 9 th digit $1=$ Parylene coating, $2=$ thermo-set plastic coating.

Fair-Rite Products Corp. PO Box J.One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) $324-7748$ wnw.fair-rite.com

Mechanical Specifications

Dim	mm	mm tol	nominal inch	inch misc.
A	12.70	± 0.25	0.500	-
B	7.90	± 0.20	0.312	-
C	6.35	± 0.25	0.250	-
D	-	-	-	-
E	-	-	-	-
F	-	-	-	-
G	-	-	-	-
H	-	-	-	-
J	-	-	-	-
K	-	-	-	-

Electrical Specifications

Typical Impedance (S^{2})	
Electrical Properties	
$\mathrm{A}_{\mathrm{L}}(\mathrm{nH})$	
$\mathrm{Ae}\left(\mathrm{cm}^{2}\right)$	$1300 \pm 25 \%$
$\sum_{\mathrm{I}} / \mathrm{A}\left(\mathrm{cm}^{-1}\right)$	0.15000
$\mathrm{I}_{\mathrm{e}}\left(\mathrm{cm}^{2}\right)$	20.80
$\mathrm{~V}_{\mathrm{e}}\left(\mathrm{cm}^{3}\right)$	3.12

Fair-Rite Product's Catalog
Part Data Sheet, 5977001101

Land Patterns

Winding Information

Turns Tested	Wire Size	1st Wire Length	2nd Wire Length
-	-		-

Reel Information

Tape Width mm	Pitch mm	Parts 7 " Reel	Parts 13 " Reel	Parts 14 " Reel
-	-	-	-	-

Package Size

Pkg Size
-
$(-)$

Connector Plate

\# Holes	\# Rows
-	-

Legend

+ Test frequency
Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available
The column $\mathrm{H}(\mathrm{Oe})$ gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in
the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material
see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.
A $1 / 2$ turn is defined as a single pass through a hole.
$\sum_{1 / A}$ - Core Constant
A_{e} : Effective Cross-Sectional Area
${ }^{1} \mathrm{e}$: Effective Path Length
A_{L} - Inductance Factor ($\frac{L}{N^{2}}$)
V_{e} : Effective Core Volume
NI - Value of dc Ampere-turns
N/AWG - Number of Turns/Wire Size for Test Coil

Fair-Rite Product's Catalog Part Data Sheet, 5977001101

Ferrite Material Constants

Specific Heat ..	$0.25 \mathrm{cal} / \mathrm{g} /{ }^{\circ} \mathrm{C}$
Thermal Conductivity	3.5-4.5 mW/cm - ${ }^{\circ} \mathrm{C}$
Coefficient of Linear Expansion	$8-10 \times 10^{-6} /{ }^{\circ} \mathrm{C}$
Tensile Strength	$4.9 \mathrm{kgf} / \mathrm{mm}^{2}$
Compressive Strength	$42 \mathrm{kgf} / \mathrm{mm}^{2}$
Young's Modulus	$15 \times 10^{3} \mathrm{kgf} / \mathrm{mm}^{2}$
Hardness (Knoop)	650
Specific Gravity	$\approx 4.7 \mathrm{~g} / \mathrm{cm}^{3}$
The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.	

See next page for further material specifications. Fair-Rite Products Corp. PO Box J.One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324 - 7748 wmw .fair-rite.com

A MnZn ferrite for use in a wide range of high and low flux density inductive designs for frequencies up to 100 kHz .

Pot cores, E\&I cores, U cores, rods, toroids, and bobbins are all available in 77 material.

Complex Permeability vs. Frequency

Measured on an 18/10/6mm toroid using the HP 4284A and the HP 4291A.

Initial Permeability vs. Temperature

Measured on an $18 / 10 / 6 \mathrm{~mm}$ toroid at 100 kHz .

Fair-Rite Product's Catalog
Part Data Sheet, 5977001101
Printed: 2014-06-11

77 Material Characteristics:

Property	Unit	Symbol	Value
Initial Permeability Q <10 gauss		μ_{i}	2000
Flux Density e Field Strength	gauss oersted	B	\mathbf{H}
Residual Flux Density	gauss	B_{r}	4900
Coercive Force	oersted	H_{c}	$\mathbf{5}$
Loss Factor e Frequency	10^{-6}	$\tan \delta / \mu_{i}$	0.30
Temperature Coefficient of Initial Permeability $\left(20-70^{\circ} \mathrm{C}\right)$	$\% /{ }^{\circ} \mathrm{C}$		$\mathbf{1 5}$
Curie Temperature	${ }^{\circ} \mathrm{C}$	T_{e}	0.1
Resistivity	$\Omega \mathrm{cm}$	ρ	0.7

Incremental Permeability vs. H

Measured on an $18 / 10 / 6 \mathrm{~mm}$ toroid at 10 kHz .

Ferrite Components for the Electronics Industry
Fair-Rite Products Corp. PO Box J.One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Amplitude Permeability vs. Flux Density

Measured on an $18 / 10 / 6 \mathrm{~mm}$ toroid at 10 kHz .

Power Loss Density vs. Temperature

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW.

Fair-Rite Product's Catalog
Part Data Sheet, 5977001101
Printed: 2014-06-11

Power Loss Density vs. Flux Density

Measured on an 18/10/6mm toroid using the
Clarke Hess 258 VAW at $100^{\circ} \mathrm{C}$

Flux Density vs. Temperature

Measured on an $18 / 10 / 6 \mathrm{~mm}$ toroid at 10 kHz and $\mathrm{H}=5$ oersted.

