

Serial Number Database Final Write-Up

By:

Jacob Byrnes,

 Jack Campanale,

 Ndenda Fierro Mutsaku,

Thomas Cole Varney

Submitted To: Professor V.J. Manzo

Date: 10/12/2022

Introduction:

Our goals for this term were to clean up the current website to make it easier for future

development, bolster user profile functionality, make additional UI/UX improvements, and increase

overall maintainability and legitimacy as a proof of concept moving forward.

Migration to React and Spring Boot:

Starting this project, we were faced with the challenge of where to start. The last group left a

functional website, but there was a need for further understanding of how it worked amongst our group.

The front end made use of an HTML framework called PUG which was unknown to all our group members.

The back end used Python, which we were all familiar with, but was in need of documentation as we were

unsure of what did what. In our first couple of meetings, we decided that if the Serial Number Database

was to move forward in future development, it needed to be reworked. In order to do this, we began a

migration of this project away from a PUG and Python stack to a React and Spring Boot stack. React

contains a massive library of developer-friendly features like components, hooks, react-router, etc. This

would prove to not only make it easier for us to recreate the website, but to also implement

improvements in how easy it is to follow. Spring Boot allowed us to step away from using an Express.js

server on the front end, and instead utilize RESTful programming to connect with the Backend. This

engenders a more robust and maintainable backend environment that will find more success withstanding

the test of time with changing industry standards. Migrating to a RESTful Spring Boot microservice also

creates an environment of easy updating, fixing, and adding of new or existing functionality. Through this

migration, we were able to produce a recreation of what we were presented before that we believe to be

more easily legible and includes improved documentation.

Figure 1: Front End File Structure Before

Figure 2: Front End File Structure After

React Functionality:

We created the starting React

project using the create-react-app

method in the terminal. This gave

us a good boiler plate to start with.

From here, we wanted to make sure

to utilize React’s capabilities as

much as possible in our recreation.

To make routing between different

pages easier, we used React’s built

in routing system. This allowed us

to specify a route that links to a file.

For example, the root route “/”

links to the Home.jsx file in the

/src/Components folder.

Components allow developers to split the User Interface into smaller, more digestible, reusable chunks.

We employed the use of Components throughout the development

process. All the current pages a user can be directed to are Components.

Furthermore, UI elements on these pages that might be reusable as well

as more easily read on a separate page, such as an Instrument or a User

Profile, are their own Components.

In React, there are two types of Components: Functional and Class.

We made use of Functional Components throughout the project as, stated

here, Class Components can get confusing to read and write. Functional

Components allow for the usage of React Hooks which were integral to our

OAuth Implementation. The useState hook gave us an equivalence to a

constructor in a Class Component, which we made use of when setting the

current user and authentication in OAuth. The useEffect hook calls some

code whenever a change is made to the React DOM which we used to call

a load user function when the OAuth login succeeded.

Through these features of React, we were able to recreate the front end perfectly while utilizing

well known and helpful features of React. Note that a wireframe of the frontend can be found here.

Figure 3: React Router in App.js

Figure 4: Component File Structure

Figure 5: React useState Hook Usage in App.js Figure 6: React useEffect Hook Usage

https://reactjs.org/docs/create-a-new-react-app.html
https://reactjs.org/docs/create-a-new-react-app.html
https://reactjs.org/docs/hooks-intro.html
https://miro.com/app/board/uXjVPXFvEGM=/

Spring Boot Functionality:

Our backend is built using the REST (Representational State Transfer) microservice architecture. How

this works is, our backend sits on a server port and exposes a set of REST endpoints that the front-end

service can reach through the http protocol. The front end sends a request to an endpoint, the backend

server processes the request and sends a response back with the result of the process, which the front

end will then use to repopulate the information portrayed to the user.

Control Flow Diagram:

Figure 7: Control Flow Diagram

Improvements to Previous System:

Figure 8: Previous Backend Structure

Figure 9: Current Backend Structure

OAuth2 Integration

Instead of building out a user account system within our 7-week time frame, we opted to instead use

OAuth2 for our user data management and authorization. Currently, the application supports signing in

with a user’s google account with the scope allowing us to see their profile and their email address.

When a user signs in with google for the first time, there will be an entry added into our user table in the

database where we could in the future keep track of more information if need be. As far as instruments

are concerned, they are linked to the user themselves through an owner field in the instrument

database where their google email address will be tagged. This allows us to find instruments owned by a

single user.

Figure 10: Google OAuth Redirect Page

Signing in with OAuth will then allow users to see their profile and dashboard, as well as introduce the

ability to add their instruments to the site.

AWS Integration for Email Notification

We decided to use AWS Simple Email Service (SES) as our email service to notify users about instrument

checks and to allow users to change their password if they forget it. AWS and Gmail accounts (both use

email: serialnumberdatabase22@gmail.com password: SNDB_rework22) were created for the project.

An AWS Lambda function was created that can call AWS SES and send emails to users. The function was

then linked to an API Gateway so that our backend code could connect to AWS without requiring AWS

libraries to be installed locally.

The Lambda function calls were linked into our backend so that they can be called by the front-end using

REST API calls the same way it calls all other back-end functions.

mailto:serialnumberdatabase22@gmail.com

Future Work:

We completed most of our goals by the end of the project, by completing the migration to React and

Spring boot and adding the OAuth login and AWS email setup. Some of the steps that need to be taken

for future work are:

• Functional image uploading for adding instruments

o Future teams should look into utilizing GridFS with the mongoDB

• Pull users current instruments from backend

o We push instruments to the database with a field “owner” being their Gmail. This

should streamline the process of pulling a user’s instruments and populating the

dashboard on creation

• Functioning notifications that add to user dashboard and email them

o Our email service is set up in AWS with a functioning URL endpoint in our backend code.

Notifications should go through to users when their instruments are “Checked”. This

should be as easy as when an instrument is checked, take its user field (email) and send

both a notification and an email using their respective URL endpoints.

• Web Crawlers and Scrapers

o Look into current APIs for eBay/Craigslist/etc. Also perform research on rules for

crawling and scraping for specific sites as some may not want to be crawled/scraped

o This could work with email/notification service if this get’s set up. Once a crawler finds

an instrument with a matching serial number, notify user.

• Find place to host front end and back end

o These run separately from one another, need to find places to host both

https://www.mongodb.com/docs/manual/core/gridfs/?_ga=2.241282762.990049722.1665591589-293739340.1665591589

