
Max-Objects Database
Suverino Frith and Oliver Rayner

Backend (server side)
The backend is made up of three parts: PostgreSQL, GraphQL, and NodeJS. The

database is hosted on a PostgreSQL server. There is a tool named PostGraphile that takes a
PostgreSQL database’s schema and automatically generates an immediately available
GraphQL API. PostGraphile then acts as a middleware to connect NodeJS to the GraphQL API
which can then be used by the frontend application.

The first step to making this all work was migrating the database code to a syntax
acceptable by PostgreSQL. The old database code was written to work on MySQL. In order to
accomplish this we created an Ubuntu 18.04 virtual machine that we knew could host all of the
softwares required for the migration: MySql version 5.6, pgloader version <= 3, and PostgreSQL
<= 10. pgloader is a program that actually takes an existing MySQL database and migrates it to
an existing PostgreSQL database. The reason we are using such an old version of MySQL is
that pgloader is not compatible with the new way MySQL authenticates its users, and this is the
newest version without that new authentication program.

On Ubuntu 18.04 it was necessary to download MySQL from the source tree using
community edition of MySQL available on their github, and then to build and install it from
source. PostgreSQL and pgloader were available from the default Ubuntu repositories. Once all
of these three softwares were acquired, we created a database named ‘max’ in both MySQL
and PostgreSQL. We then ran the database script that was provided to our group on the MySQL
database after modifying one line in the script that was giving pgloader problems. And finally we
ran pgloader while supplying it with both databases as can be seen in figure 1. This provided us
with a PostgreSQL database that was a replica of the original MySQL database. We then made
PostgreSQL generate a script that could recreate the database with PostgreSQL compatible
SQL code. Following this we moved the script to our development repository for use on our
development machines.

Figure 1: pgloader migrating the database

The next step was to automatically generate a GraphQL API to interface with the
database. To do this we used PostGraphile because it can instantly create a GraphQL API when
pointed at an existing PostgreSQL database. We imported postgraphile into our NodeJS
application, gave it the information it needed to find our locally hosted PostgreSQL database,

assigned it a port to run on, and we were good to go. We now had a fully functional GraphQL
API that could serve our frontend application using NodeJS and ExpressJS.

For most of our purposes the base API generated was enough. In order to register new
members we used the ‘createMembre’ mutation provided by PostGraphile. We used GraphiQL
to test our API as can be seen in figure 2. GraphiQL is a user interface designed to be a quick
and easy way to test GraphQL APIs. Then we used pgAdmin (a user-interface for PostgreSQL)
to test that the API successfully updated the database. We viewed the database by giving
pgAdmin specific queries as seen in figure 3. With both tests being successful, we called the
API from the frontend after enabling cross origin request support (CORS), and this can be seen
in figure 4. CORS is necessary to make two ports on the same machine communicate with each
other (the port running the backend [:8080] and the port running the frontend [:3000]).

Figure 2: Testing the API with Graph iQL

Figure 3: Viewing the database via queries on pgAdmin

const requestBody = {
query: `

mutation {
createMembre(

input: {membre: {emailMembre: "${email}", password:
"${password}", nickname: "${username}", dateInscription:
"${formattedDate}"}}

) {
membre {

admin
dateInscription
emailMembre
idMembre
nickname
password
superuser

}
}

}
`

};
fetch("http://localhost:8080/graphql", {

method: 'POST',
body: JSON.stringify(requestBody),
headers: {

'Content-Type': 'application/json'
}

})
Figure 4: Calling the API in ReactJS

We created a custom SQL function to support login functionality. This was advantageous
because it allowed us to minimize the amount of data sent to and received from the database
when authenticating a member’s login. Our custom function took in a user’s password, and
either their email or username, and returned the userID only if the information provided matched
a row in the database; otherwise it returned null. The function can be seen in figure 5.
PostGraphile automatically took our newly created SQL function and added it to our GraphQL

API, and so we were able to immediately test it using GraphiQL and pgAdmin, and implement
the function into our application. After the users were able to login we used the React-Redux
library to store the user’s ID throughout the application so that any React component could call
the GraphQL API to send and receive data related to the current user. This concludes the
makeup of our backend NodeJS server.

Figure 5: Custom SQL login function

Frontend (client side)
The frontend is made up from CSS & JSX files using the React framework. The website

is set up in React and uses a quick web development tool called react-bootstrap which is
already part of the website (https://react-bootstrap.github.io). Bootstrap is pretty easy to learn
and is a great tool for setting up good looking components quickly with bootstrap by using
certain commands available on the website -- link above -- and using className with CSS
styling.

To start off you will need to have knowledge of HTML, CSS, and JavaScript (JS). HTML
and CSS are pretty quick to understand, and for JS you will just need to know the basics in
order to progress. Look over the React tutorials next and see how JSX takes both HTML and JS
to make websites and how the className defines certain attributes. All of the recommended
videos for getting started are listed on the frontend/README.

You will also learn by reviewing the current project, try to find the patterns by looking at
the website and how the code changes the UI. Also the keywords on the bottom of the page will
help you understand the concepts that you need to get started with the frontend's future
development. Along with the prototyped images provided on the Wiki page Max Objects site,
you will know the direction on how to configure the website. Figure 6 shows our most complex
page and it was used with a combination of react-hooks, react-bootstrap, and a variety of
components. With a little bit of time and reviewing the MyObjects.jsx file you should be able to
understand what is happening.

Figure 7 shows the registration page which is what we first used to connect the frontend
with the backend. Many input fields were created and looking over the register and login jsx files
you will find that they are pretty similar in the way they handle the different form components.
This was also created primarily using react-bootstrap. The current look is very basic but can be
adjusted using CSS which can be followed along to on the frontend/README.

https://react-bootstrap.github.io/

Figure 6: localhost:3000/myobjects

Figure 7: Registration page

.

When you want to add additional pages that will show up on the website. You will need
to put that link within the router. The current website uses react-router (which is what we are
using for the website) which can be found in the App.jsx file.. Here as shown in figure 8, the “/”
followed by the name creates a new page that can be accessed on the localhost:3000. For
example typing localhost:3000/myobjects in the search bar will bring you to the myobjects page
which runs on the MyObject.jsx file.

Sometimes you will need to import files from different sections and the basic example in
figure 9 shows what that looks like on the top of the App.jsx file. You will notice when starting to
code that there are many instances of importing and it is the only way to connect to files within
the text editor. If it is confusing I would recommend looking up about react-router on youtube.

<Switch>

<Route path="/" exact component={Home}/>

<Route path="/register" exact component={Register} />

<Route path="/login" exact component={Login}/>

<Route path='/myobjects' exact component={MyObjects}/>

<Route path="/hdiio" exact component={HDIIO}/>

<Route path="/contact" exact component={Contact}/>

<Route path='/objects' exact component={Objects}/>

<Route path='/state' exact component={State}/>

<Route path='/props' exact component={Props}/>

</Switch>

Figure 8: React-Router section on App.jsx

import React, { Component } from 'react';

import './App.css';

import 'bootstrap/dist/css/bootstrap.min.css'

import Contact from "./Components/Contact"

import HDIIO from "./Components/HDIIO"

import Home from "./Components/Home"

import Navigation from "./Components/Navigation";

import Register from "./Components/Register";

import Login from "./Components/Login";

import Footer from "./Components/Footer"

import Objects from "./Components/Objects"

import MyObjects from "./Components/MyObjects";

import State from "./Components/StateEX";

import Props from "./Components/PropsEX";

import {BrowserRouter as Router, Switch, Route } from "react-router-dom";

Figure 9: importing example on App.jsx

Props are used in order to get the components to change based on user inputs on a
component. In the project I put an example of this that can be run by doing the following,
starting up React with yarn start (mentioned in the backend portion) and then entering
localhost:3000/props into the search bar. By doing that figure 12 should appear on the web
browser. You will notice that the text is not editable and is stationary. Looking at figure 10 and
figure 11, you should be able to spot out some patterns. Figure 10 shows how the component
<Superhero/> is made and figure 11 shows the manipulation of the component by using different
name and age attributes. Props are very useful for making your own components and if you
mess around with both pages, adding new prop attributes and adding more <Superhero/>
components, you will have gotten a good grasp on the concept of props.

import React from 'react';

//Used as example for showing prop functionality. You can use this for coding as
a template

//or you can delete all files with EX behind them and remove them out of the
App.jsx file if you do not need them.

const Hero = props => {

return <h1> This is {props.hero} and they are {props.age}</h1>

}

export default Hero;

Figure 10: SuperHeroPropEX.jsx

import React from 'react';

import "./Home.css";

import 'bootstrap/dist/css/bootstrap.min.css';

import Superhero from "./SubComponents/SuperHeroPropEX";

//Used as example (use /props at end of localhost:3000 to access) for showing how
props work. You can use this for coding as a template

//or you can delete all files with EX behind them and remove them out of the
App.jsx file if you do not need them.

function PropEX() {

return (

<div>

<Superhero hero = "Batman" age = "34"/>

<Superhero hero = "Superman" age = "35"/>

</div>

);

}

<div className='news'>

</div>

export default PropEX;

Figure 11: PropsEX.jsx

Figure 12: localhost:3000/props on web browser

States are used to change the layout after certain user actions. In the StateEX.jsx file
there are also examples of react-bootstrap. To get to the state example page, open up the
localhost:3000 website with yarn start and type localhost:3000/state in the search bar. Figure 14
should show up on the web browser at this point. You will notice that useState and the {Button}
for react-bootstrap are imported in and this will be how you will get the functionality. Look at
const [count,setCounter] = useState(2); in figure 13 and you will notice that the same number in
useState(2) is shown on the website. Each button has a functionality and is connected to a different
bootstrap variant color. The increment button increases the number, the decrement button
decreases the number, the nothing button does not have functionality, and the zero button sets the
code back to zero. The setCount changes the count and count is what the number currently is.

import React, {useState} from 'react';

import "./Home.css";

import 'bootstrap/dist/css/bootstrap.min.css';

import {Button} from 'react-bootstrap';

//Used as example (use /state at end of localhost:3000 to access) for showing

react hooks and state. You can use this for coding as a template

//or you can delete all files with EX behind them and remove them out of the

App.jsx file if you do not need them.

function StateEX() {

const [count,setCounter] = useState(2);

function add() {

setCounter(count + 1)

}

function minus() {

setCounter(count - 1)

}

function zero() {

setCounter(0)

}

return (

<div>

<Button variant = "success" onClick={add}>Increment</Button>

<p>{count}</p>

<Button variant = "danger" onClick={minus}>Decrement</Button>

<Button>Nothing</Button>

<Button variant = "dark" onClick={zero}>Zero</Button>

</div>

);

}

<div className='news'>

</div>

export default StateEX;

Figure 13: StateEX.jsx

Figure 14: localhost:3000/state on web browser

If you have any confusions while coding ahead make sure to search for the answer or
find a friend who has experience with coding. The examples are pretty basic but should give you
a strong foundation going forward. React takes time to learn but is a very useful tool. I highly
recommend looking through the backend and frontend READMEs in order to have a head start
on development.

Next Steps

Resources
The resources necessary to learn the appropriate skills required for continued

development of this project are available in the respective backend and frontend folders of the
revised project repository.

Known Issues
The global state of the application resets due to automatic page refreshes whenever you

click on a react component. This is an issue because whenever we store a user ID that can be
used throughout the entire app, it is immediately erased when the user switches pages to a
page where the ID would be useful. There is a way to configure the frontend server so that this
does not happen, but we were unable to configure it in such a way using the time we had.

Backlog
We used the Jira software to keep track of what updates we need to make to the

application, the amount of effort those updates will take (the number to the far right), and the
priority level of each task (the colored arrows on the far right). This can be seen below.

Key Words:

React: Framework for the website.

HTML (HyperText Markup Language): Uses tags with <> to place basic elements with
attributes with = signs. For example <p id=”red”>This is a paragraph</p>, yellow is tag and blue
is attribute.

CSS (Cascading Style Sheets): Uses selectors to change visual aspects of the HTML.
For example .red { color: red}, yellow selects the item to change and blue modifies it to red.

JS (JavaScript): Basic programming language to give functionality to the website.

JSX: Used in React and combines HTML and JS into one.

React-Bootstrap: Used to make fast and good-looking components quickly.

React-Router: Organizes the set up between the different pages.

Props: Used for changing component variables but must be used on a different file.

State: Must be used on the same file and updates and changes the form based on
different inputs.

PostgreSQL: An open source relational database

GraphQL: An API framework that simplifies requests to the backend and provides a
flexible and standardized data format

PostGraphile: A middleware that takes a PostgreSQL database and generates a
GraphQL API for it

NodeJS: A javascript runtime environment created for running javascript outside of the
browser

ExpressJS: A minimalist web framework for node

React-Redux: A predictable state container for javascript applications

