Max-Objects Database

Suverino Frith and Oliver Rayner

Backend (server side)

The backend is made up of three parts: PostgreSQL, GraphQL, and NodeJS. The
database is hosted on a PostgreSQL server. There is a tool named PostGraphile that takes a
PostgreSQL database’s schema and automatically generates an immediately available
GraphQL API. PostGraphile then acts as a middleware to connect NodedJS to the GraphQL API
which can then be used by the frontend application.

The first step to making this all work was migrating the database code to a syntax
acceptable by PostgreSQL. The old database code was written to work on MySQL. In order to
accomplish this we created an Ubuntu 18.04 virtual machine that we knew could host all of the
softwares required for the migration: MySql version 5.6, pgloader version <= 3, and PostgreSQL
<= 10. pgloader is a program that actually takes an existing MySQL database and migrates it to
an existing PostgreSQL database. The reason we are using such an old version of MySQL is
that pgloader is not compatible with the new way MySQL authenticates its users, and this is the
newest version without that new authentication program.

On Ubuntu 18.04 it was necessary to download MySQL from the source tree using
community edition of MySQL available on their github, and then to build and install it from
source. PostgreSQL and pgloader were available from the default Ubuntu repositories. Once all
of these three softwares were acquired, we created a database named ‘max’ in both MySQL
and PostgreSQL. We then ran the database script that was provided to our group on the MySQL
database after modifying one line in the script that was giving pgloader problems. And finally we
ran pgloader while supplying it with both databases as can be seen in figure 1. This provided us
with a PostgreSQL database that was a replica of the original MySQL database. We then made
PostgreSQL generate a script that could recreate the database with PostgreSQL compatible
SQL code. Following this we moved the script to our development repository for use on our
development machines.

seatang@neptune-redl8:~5 pgloader mysql://root@loca
2021-05-02T00:15:49.108000Z LOG report summary reset
table name imported

fetch meta data
Create Schemas
Create SQL Types
Create tables
Set Table 0OIDs

max.auteurs
max.auteur_libraries
max.commentaires
max.formats
max.library_plateformes 288
max.library wares 142
max.membres 16178
max.auteur_objets 5995
max.environnements T
max.libraries 135
max.library_url 154
max.maxversions 8
max.news 116
max.objet_environnements 8165
max.objet_libraries 4151
max.objet plateformes 10604
max.objet _wares 5116
max.objets 4851
max.sessions 149
max.url 446
max.objet formats 5126
max.objet _maxversions 7316
max.objet_url
max.plateformes
max.sondage
max.wares

P

<]

oW
wow oo

L e - - - 1]

@

0]
e
5]
@
0
o]

@ a

200000

=]

COPY Threads Completion
Create Indexes

Index Build Completion
Reset Sequences

Primary Keys

Create Foreign Keys
Create Triggers

Install Comments

Total import time

Figure 1: pgloader migrating the database

The next step was to automatically generate a GraphQL API to interface with the
database. To do this we used PostGraphile because it can instantly create a GraphQL APl when
pointed at an existing PostgreSQL database. We imported postgraphile into our NodeJS
application, gave it the information it needed to find our locally hosted PostgreSQL database,

assigned it a port to run on, and we were good to go. We now had a fully functional GraphQL
API that could serve our frontend application using NodeJS and ExpressJS.

For most of our purposes the base API generated was enough. In order to register new
members we used the ‘createMembre’ mutation provided by PostGraphile. We used GraphiQL
to test our API as can be seen in figure 2. Graph/QL is a user interface designed to be a quick
and easy way to test GraphQL APIs. Then we used pgAdmin (a user-interface for PostgreSQL)
to test that the API successfully updated the database. We viewed the database by giving
pgAdmin specific queries as seen in figure 3. With both tests being successful, we called the
API from the frontend after enabling cross origin request support (CORS), and this can be seen
in figure 4. CORS is necessary to make two ports on the same machine communicate with each
other (the port running the backend [:8080] and the port running the frontend [:3000]).

W PostGraphiQL > Prettify History Explorer Merge Copy Headers L

mutation MyMutation { {
createMembre ("data": {
input: { "createMembre": {
membre: | "membre": {
emailMembre: "userl@todo.com" "admin": "1",
nickname: "testl" "dateInscription":
password: "passl" "emailMembre": "u
dateInscription: "2021-05-06" "idMembre": "
"nickname": "
} "password": " 1
) A "superuser": false
membre { }
admin }
dateInscription }
emaillMembre }
idMembre

nickname
password
superuser

Figure 2: Testing the API with GraphiQL

E max/postgres@max v

Data Output Explain Messages Notifications

Ic!Jlnembre a superuser nickname . password . a ernaleembrg a date_inscription a a.drlnln a
4 Dbigint boolean character varying (50) character varying (25) character varying (70) date bigint
1 16192 false testl passl userl@todo.com 2021-05-06 1
2 16191 false test3 pass test3@todo.dom 2021-05-04 1
3 16190 false suvV pass suv@todo.com 2021-05-04 1
4 16189 false test2 password max2@todo.com 2021-05-02 1
5 16188 false testl pass max@tedo.com 2021-01-02 1

Query Editor ~ Query History

1 select * from max.membres order by id_membre desc limit 5

Figure 3: Viewing the database via queries on pgAdmin

mutation {
createMembre (
input: {membre: {emailMembre: "S${email}", password:
nickname: "S${username}", datelInscription:

dateInscription
emailMembre
idMembre
nickname
password
superuser

{
'POST',
JSON.stringify (rec
ders: {
'Content-Type': 'application/json'

Figure 4: Calling the APl in ReactJS

We created a custom SQL function to support login functionality. This was advantageous
because it allowed us to minimize the amount of data sent to and received from the database
when authenticating a member’s login. Our custom function took in a user’s password, and
either their email or username, and returned the userlD only if the information provided matched
a row in the database; otherwise it returned null. The function can be seen in figure 5.
PostGraphile automatically took our newly created SQL function and added it to our GraphQL

API, and so we were able to immediately test it using Graph/QL and pgAdmin, and implement
the function into our application. After the users were able to login we used the React-Redux
library to store the user’s ID throughout the application so that any React component could call
the GraphQL API to send and receive data related to the current user. This concludes the
makeup of our backend NodeJS server.

1
2
&
4
5
L)
-
g

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

-— FUWCTION: max.login({text, text, text)
-— DROP FUNCTION max.login{text, text, text);

CREATE OR REPLACE FUNCTION max.login|
username text,
email text,
pass text)
RETURNS bigint
LANGUAGE 'plpgsqgl!'
COST 1e6
VOLATILE PARALLEL UMNSAFE
AS SBODYS
declare -diden bigint;
begin
select id_membre inte dden
from max.membres
where (nickname=username or email_membre=email)
return diden;
end;
SBODYS;

ALTER FUNCTION max.login(text, text, text)
OWNER TO postgres;

Dashboard Properties SOL Statistics Dependencies Dependents g max/posigres...

and password=pass;

Figure 5: Custom SQL login function

Frontend (client side)

The frontend is made up from CSS & JSX files using the React framework. The website
is set up in React and uses a quick web development tool called react-bootstrap which is
already part of the website (hitps://react-bootstrap.qithub.io). Bootstrap is pretty easy to learn
and is a great tool for setting up good looking components quickly with bootstrap by using
certain commands available on the website -- link above -- and using className with CSS
styling.

To start off you will need to have knowledge of HTML, CSS, and JavaScript (JS). HTML
and CSS are pretty quick to understand, and for JS you will just need to know the basics in
order to progress. Look over the React tutorials next and see how JSX takes both HTML and JS
to make websites and how the className defines certain attributes. All of the recommended
videos for getting started are listed on the frontend/README.

You will also learn by reviewing the current project, try to find the patterns by looking at
the website and how the code changes the Ul. Also the keywords on the bottom of the page will
help you understand the concepts that you need to get started with the frontend's future
development. Along with the prototyped images provided on the Wiki page Max Obijects site,
you will know the direction on how to configure the website. Figure 6 shows our most complex
page and it was used with a combination of react-hooks, react-bootstrap, and a variety of
components. With a little bit of time and reviewing the MyObijects.jsx file you should be able to
understand what is happening.

Figure 7 shows the registration page which is what we first used to connect the frontend
with the backend. Many input fields were created and looking over the register and login jsx files
you will find that they are pretty similar in the way they handle the different form components.
This was also created primarily using react-bootstrap. The current look is very basic but can be
adjusted using CSS which can be followed along to on the frontend/README.

https://react-bootstrap.github.io/

DataMax

Search

All, Objects, Libraries, Patches, Devices, Standalones, Other, Dev | Dropdown ¥ ‘

My Items My Profile
[tem # {i} My Bio Name @
short description M My Bio info @
detailed description [i} My URLs: @
Category Tags: M URL Entry

Objects Libraries Patches URL Entry

Devices i Standalor;es ' Other URL Entry

Coyright of Maxobjects.com

Figure 6: localhost:3000/myobjects

DataMax

Username

Username

Email

Email

Password

Password

Confirm Password

Confirm Password

Coyright of Maxobjects.com

Figure 7: Registration page

When you want to add additional pages that will show up on the website. You will need
to put that link within the router. The current website uses react-router (which is what we are
using for the website) which can be found in the App.jsx file.. Here as shown in figure 8, the “/”
followed by the name creates a new page that can be accessed on the localhost:3000. For
example typing localhost:3000/myobjects in the search bar will bring you to the myobjects page
which runs on the MyObject.jsx file.

Sometimes you will need to import files from different sections and the basic example in
figure 9 shows what that looks like on the top of the App.jsx file. You will notice when starting to
code that there are many instances of importing and it is the only way to connect to files within
the text editor. If it is confusing | would recommend looking up about react-router on youtube.

Switch

Route path="/" exact component={Home}

Route path="/register" exact component={Register}
Route path="/login" exact component={Login}

Route path='/myobjects' exact component={MyObjects}
Route path="/hdiio" exact component={HDIIO}

Route path="/contact" exact component={Contact}
Route path="'/objects' exact component={Objects}
Route path='/state' exact component={State}

Route path='/props' exact component={Props}

Figure 8: React-Router section on App.jsx
React, { Component } from 'react’;
'./App.css';
'bootstrap/dist/css/bootstrap.min.css’
Contact from "./Components/Contact"
HDIIO from "./Components/HDIIO"

Home from "./Components/Home"

Navigation from

./Components/Navigation";

Register from "./Components/Register";
Login from "./Components/Login";
Footer from "./Components/Footer"

Objects from "./Components/Objects"”

MyObjects from "./Components/MyObjects";

State from "./Components/StateEX";

Props from "./Components/PropseEx";

{BrowserRouter as Router, Switch, Route } from "react-router-dom";

Figure 9: importing example on App.jsx

Props are used in order to get the components to change based on user inputs on a
component. In the project | put an example of this that can be run by doing the following,
starting up React with yarn start (mentioned in the backend portion) and then entering
localhost:3000/props into the search bar. By doing that figure 12 should appear on the web
browser. You will notice that the text is not editable and is stationary. Looking at figure 10 and
figure 11, you should be able to spot out some patterns. Figure 10 shows how the component
<Superhero/> is made and figure 11 shows the manipulation of the component by using different
name and age attributes. Props are very useful for making your own components and if you
mess around with both pages, adding new prop attributes and adding more <Superhero/>
components, you will have gotten a good grasp on the concept of props.

import React from 'react’;

Hero = props {
return This is {props.hero} and they are {props.age

}

export default Hero;

Figure 10: SuperHeroPropEX.jsx

import React from 'react’;

import "./Home.css";

import ‘'bootstrap/dist/css/bootstrap.min.css’;

import Superhero from "./SubComponents/SuperHeroPropEX";

PropEX() {

return (

Superhero hero "Batman" age = "34"

Superhero hero "Superman" age = "35"

className="news"

export default PropEX;

Figure 11: PropsEX.jsx

DataMax Register Login

This is Batman and they are 34

This is Superman and they are
35

Reyra o Menigectcom How to Install Objects Contact

Figure 12: localhost:3000/props on web browser

States are used to change the layout after certain user actions. In the StateEX.jsx file
there are also examples of react-bootstrap. To get to the state example page, open up the
localhost:3000 website with yarn start and type localhost:3000/state in the search bar. Figure 14
should show up on the web browser at this point. You will notice that useState and the {Button}
for react-bootstrap are imported in and this will be how you will get the functionality. Look at
const [count,setCounter] = useState(2); in figure 13 and you will notice that the same number in
useState(2) is shown on the website. Each button has a functionality and is connected to a different
bootstrap variant color. The increment button increases the number, the decrement button
decreases the number, the nothing button does not have functionality, and the zero button sets the
code back to zero. The setCount changes the count and count is what the number currently is.

import React, {useState} from 'react’;

import "./Home.css";

import ‘'bootstrap/dist/css/bootstrap.min.css’;

import {Button} from 'react-bootstrap’;

StateEX() {

[count,setCounter] = useState(2);

add() {

setCounter(count + 1)

minus() {

setCounter(count - 1)

zero() {

setCounter(9)

return (

Button variant "success" onClick={add}>Increment</Button

count

Button variant "danger" onClick={minus}>Decrement</Button

Button>Nothing</Button

Button variant = "dark" onClick={zero}>Zero</Button

className="news"

export default StateEX;

Figure 13: StateEX.jsx

DataMax

Increment

Decrement Nothing Zero

Coyright of Maxobjects.com

Figure 14: localhost:3000/state on web browser

If you have any confusions while coding ahead make sure to search for the answer or
find a friend who has experience with coding. The examples are pretty basic but should give you
a strong foundation going forward. React takes time to learn but is a very useful tool. | highly
recommend looking through the backend and frontend READMEs in order to have a head start
on development.

Next Steps

Resources

The resources necessary to learn the appropriate skills required for continued
development of this project are available in the respective backend and frontend folders of the
revised project repository.

Known Issues

The global state of the application resets due to automatic page refreshes whenever you
click on a react component. This is an issue because whenever we store a user ID that can be
used throughout the entire app, it is immediately erased when the user switches pages to a
page where the ID would be useful. There is a way to configure the frontend server so that this
does not happen, but we were unable to configure it in such a way using the time we had.

Backlog

We used the Jira software to keep track of what updates we need to make to the
application, the amount of effort those updates will take (the number to the far right), and the
priority level of each task (the colored arrows on the far right). This can be seen below.

Backlog 18 issues eee
Allow users to add objects MOW-2 1+ e
Allow users to create libraries MOW-3 1+ &
Allow users to do a general search MOW-13 T 8
Allow users to view other users projects MOW-4 1 6
Allow users to edit their items MOW-22 1 7
Allow users to edit their profile MOW-23 3
Allow users to give an item multiple tags MOW-9 5
Allows users to search by category MOW-14 5
Have video uploading options MOW-15 ¢ 7
Have images uploading options MOW-24 & 4
Allow maintainers to designate Random {Blank} of the Day Mow-21 4 3
Allow maintainers to edit news MOW-20 4 a4
Allow superusers to moderate posts MOW-11 4 ' s
Deploy on DigitalOcean MOW-31 & s
Allow users to visit "How Do | Install Objects" page MOW-18 4 1
Make Ul styled like cycling 74 website MOW-12 4 3
Make website navigable on mobile MOW-5 4 ' a

Create system for users to find ways to get started with unfamiliar max objects @ Quickstart
Key Words:
y :

React: Framework for the website.

HTML (HyperText Markup Language): Uses tags with <> to place basic elements with
attributes with = signs. For example <p id="red”>This is a paragraph</p>, yellow is tag and blue
is attribute.

CSS (Cascading Style Sheets): Uses selectors to change visual aspects of the HTML.
For example .red { color: red}, yellow selects the item to change and blue modifies it to red.

JS (JavaScript): Basic programming language to give functionality to the website.
JSX: Used in React and combines HTML and JS into one.

React-Bootstrap: Used to make fast and good-looking components quickly.
React-Router: Organizes the set up between the different pages.

Props: Used for changing component variables but must be used on a different file.

State: Must be used on the same file and updates and changes the form based on
different inputs.

PostgreSQL: An open source relational database

GraphQL: An API framework that simplifies requests to the backend and provides a
flexible and standardized data format

PostGraphile: A middleware that takes a PostgreSQL database and generates a
GraphQL API for it

NodedS: A javascript runtime environment created for running javascript outside of the
browser

ExpressJS: A minimalist web framework for node

React-Redux: A predictable state container for javascript applications

