

Squid Squad SquidBox Team 1 - HUA 3910

Adam Spencer, Scott Pena, Hunter Poulin

Our Goal

- Create a user-friendly velocity sensitive MIDI pad
 - Be able to produce sound using bluetooth
- Design a reasonable and accessible CAD print to encase and hold our design

Why This Goal?

- Create real velocity sensitive buttons from scratch

- Check off an important part of a successful MIDI controller

What We've Accomplished

- Successfully created an updated CAD print for the Squidbox MIDI controller
- Overhaul of buttons
 - Implemented 1 successful velocity sensitive button
 - Added a few buttons that are only for menu navigation
 - Up, Down, Select, and Back
- Created a 'Velocity Demo' menu to show the velocity output of the button being pressed

Our original plan was to use Velostat

Original Materials

Prototype Buttons

Testing Velostat Button

Our original velostat buttons were inconsistent

Video demonstration of velocity testing with velostat button

New Button Design

Connecting To DAW

Receives serial data from the Arduino and converts it to MIDI data

lame	Total data	Throughput / sec.
oopMIDI Port PLS	14745	0 Byte
	A CONTRACTOR OF	

Receives MIDI data from Hairless MIDI and sends it to Ableton

Final CAD Design

CAD final design should have 8 pads not the 6 shown

-

- Make sure 3D printer has enough room to fit the case

Our Struggles

- Our main struggle was the velostat and initial custom design of a velocity sensitive button
- The Arduino board is in very poor conditions
- CAD went through multiple iterations
- Setback from lack of understanding of the previous code and the physical deliverables
- Bluetooth functionality was outside of the time constraints

Future recommendations

- Construct and calibrate the rest of the 8 buttons and the functionality for simultaneous multi-button pressing in the code
- Bluetooth functionality
- Possible combination of Squidbox Team 2's deliverable to have a final completed MIDI controller
- Buy a new Arduino
 - The one that's soldered to the LCD right now has shorted out pins, making them useless